Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | Pierre Duchesne, Pierre Lafaye de Micheaux |
Journal/Conference Name | Computational Statistics & Data Analysis |
Paper Category | Other |
Paper Abstract | Liu, Tang and Zhang [Liu, H. Tang, Y., Zhang H.H. 2009. A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics & Data Analysis 53, 853-856] proposed a chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. To approximate the distribution of interest, they used a non-central chi-square distribution, where the degrees of freedom and the non-centrality parameter were calculated using the first four cumulants of the quadratic form. Numerical examples were encouraging, suggesting that the approximation was particularly accurate in the upper tail of the distribution. We present here additional empirical evidence, comparing Liu-Tang-Zhang's four-moment non-central chi-square approximation with exact methods. While the moment-based method is interesting because of its simplicity, we demonstrate that it should be used with care in practical work, since numerical examples suggest that significant differences may occur between that method and exact methods, even in the upper tail of the distribution. |
Date of publication | 2010 |
Code Programming Language | R |
Comment |