Compressed Sensing With Prior Information: Strategies, Geometry, and Bounds

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors J. Mota, N. Deligiannis, M. Rodrigues
Journal/Conference Name I
Paper Category
Paper Abstract We address the problem of compressed sensing (CS) with prior information reconstruct a target CS signal with the aid of a similar signal that is known beforehand, our prior information. We integrate the additional knowledge of the similar signal into CS via L1-L1 and L1-L2 minimization. We then establish bounds on the number of measurements required by these problems to successfully reconstruct the original signal. Our bounds and geometrical interpretations reveal that if the prior information has good enough quality, L1-L1 minimization improves the performance of CS dramatically. In contrast, L1-L2 minimization has a performance very similar to classical CS and brings no significant benefits. All our findings are illustrated with experimental results.
Date of publication 2017
Code Programming Language Matlab
Comment

Copyright Researcher 2022