Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors C. Chen, E. W. Tramel, and J. E. Fowler
Journal/Conference Name The 45th Asilomar Conference on Signals, Systems, and Computers
Paper Category
Paper Abstract Compressed-sensing reconstruction of still images and video sequences driven by multihypothesis predictions is considered. Specifically, for still images, multiple predictions drawn for an image block are made from spatially surrounding blocks within an initial non-predicted reconstruction. For video, multihypothesis predictions of the current frame are generated from one or more previously reconstructed reference frames. In each case, the predictions are used to generate a residual in the domain of the compressed-sensing random projections. This residual being typically more compressible than the original signal leads to improved reconstruction quality. To appropriately weight the hypothesis predictions, a Tikhonov regularization to an ill-posed least-squares optimization is proposed. Experimental results demonstrate that the proposed reconstructions outperform alternative strategies not employing multihypothesis predictions.
Date of publication 2011
Code Programming Language MATLAB

Copyright Researcher II 2022