Coarse scale representation of spiking neural networks: backpropagation through spikes and application to neuromorphic hardware

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Angel Yanguas-Gil
Journal/Conference Name ACM International Conference Proceeding Series
Paper Category
Paper Abstract In this work we explore recurrent representations of leaky integrate and fire neurons operating at a timescale equal to their absolute refractory period. Our coarse time scale approximation is obtained using a probability distribution function for spike arrivals that is homogeneously distributed over this time interval. This leads to a discrete representation that exhibits the same dynamics as the continuous model, enabling efficient large scale simulations and backpropagation through the recurrent implementation. We use this approach to explore the training of deep spiking neural networks including convolutional, all-to-all connectivity, and maxpool layers directly in Pytorch. We found that the recurrent model leads to high classification accuracy using just 4-long spike trains during training. We also observed a good transfer back to continuous implementations of leaky integrate and fire neurons. Finally, we applied this approach to some of the standard control problems as a first step to explore reinforcement learning using neuromorphic chips.
Date of publication 2020
Code Programming Language Python
Comment

Copyright Researcher 2022