BayesBinMix: an R Package for Model Based Clustering of Multivariate Binary Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Panagiotis Papastamoulis, Magnus Rattray
Journal/Conference Name {The R Journal
Paper Category
Paper Abstract The BayesBinMix package offers a Bayesian framework for clustering binary data with or without missing values by fitting mixtures of multivariate Bernoulli distributions with an unknown number of components. It allows the joint estimation of the number of clusters and model parameters using Markov chain Monte Carlo sampling. Heated chains are run in parallel and accelerate the convergence to the target posterior distribution. Identifiability issues are addressed by implementing label switching algorithms. The package is demonstrated and benchmarked against the Expectation-Maximization algorithm using a simulation study as well as a real dataset.
Date of publication 2016
Code Programming Language R

Copyright Researcher 2022