Automatic Nuclei Detection Based on Generalized Laplacian of Gaussian Filters

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Hongming Xu, C. Lu, R. Berendt, N. Jha, M. Mandal
Journal/Conference Name IEEE Journal of Biomedical and Health Informatics
Paper Category
Paper Abstract Efficient and accurate detection of cell nuclei is an important step toward automatic analysis in histopathology. In this work, we present an automatic technique based on generalized Laplacian of Gaussian (gLoG) filter for nuclei detection in digitized histological images. The proposed technique first generates a bank of gLoG kernels with different scales and orientations and then performs convolution between directional gLoG kernels and the candidate image to obtain a set of response maps. The local maxima of response maps are detected and clustered into different groups by mean-shift algorithm based on their geometrical closeness. The point which has the maximum response in each group is finally selected as the nucleus seed. Experimental results on two datasets show that the proposed technique provides a superior performance in nuclei detection compared to existing techniques.
Date of publication 2017
Code Programming Language MATLAB

Copyright Researcher 2022