Attentive Feedback Network for Boundary-Aware Salient Object Detection

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mengyang Feng, Huchuan Lu, Errui Ding
Journal/Conference Name CVPR2019
Paper Category
Paper Abstract Recent deep learning based salient object detection methods achieve gratifying performance built upon Fully Convolutional Neural Networks (FCNs). However, most of them have suffered from the boundary challenge. The state-of-the-art methods employ feature aggregation tech- nique and can precisely find out wherein the salient object, but they often fail to segment out the entire object with fine boundaries, especially those raised narrow stripes. So there is still a large room for improvement over the FCN based models. In this paper, we design the Attentive Feedback Modules (AFMs) to better explore the structure of objects. A Boundary-Enhanced Loss (BEL) is further employed for learning exquisite boundaries. Our proposed deep model produces satisfying results on the object boundaries and achieves state-of-the-art performance on five widely tested salient object detection benchmarks. The network is in a fully convolutional fashion running at a speed of 26 FPS and does not need any post-processing.
Date of publication 2019
Code Programming Language MATLAB

Copyright Researcher II 2022