A novel method for assessing climate change impacts in ecotron experiments

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Inne Vanderkelen, Jakob Zscheischler, Lukas Gudmundsson, Klaus Keuler, Francois Rineau, Natalie Beenaerts, Jaco Vangronsveld, Sara Vicca & Wim Thiery
Journal/Conference Name Biogeosciences
Paper Category , ,
Paper Abstract Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and projections for the future. Here, we present a new method for creating realistic climate forcing for manipulation experiments and apply it to the UHasselt Ecotron experiment. The new methodology uses data derived from the best available regional climate model projection and consists of generating climate forcing along a gradient representative of increasingly high global mean air temperature anomalies. We first identified the best-performing regional climate model simulation for the ecotron site from the Coordinated Regional Downscaling Experiment in the European domain (EURO-CORDEX) ensemble based on two criteria (i) highest skill compared to observations from a nearby weather station and (ii) representativeness of the multi-model mean in future projections. The time window is subsequently selected from the model projection for each ecotron unit based on the global mean air temperature of the driving global climate model. The ecotron units are forced with 3-hourly output from the projections of the 5-year period in which the global mean air temperature crosses the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well representing possible compound events. The presented methodology can also be applied to other manipulation experiments, aiming at investigating ecosystem responses to realistic future climate change.
Date of publication 2020
Code Programming Language MATLAB
Comment

Copyright Researcher 2022