A Novel a Priori State Computation Strategy for the Unscented Kalman Filter to Improve Computational Efficiency
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Sanat K. Biswas, L. Qiao, A. Dempster |
Journal/Conference Name | I |
Paper Category | Signal Processing |
Paper Abstract | A priori state vector and error covariance computation for the Unscented Kalman Filter (UKF) is described. The original UKF propagates multiple sigma points to compute the a priori mean state vector and the error covariance, resulting in a higher computational time compared to the Extended Kalman Filter (EKF). In the proposed method, the posterior mean state vector is propagated and then the sigma points at the current time step are calculated using the first-order Taylor Series approximation. This reduces the computation time significantly, as demonstrated using two example applications which show improvements of 90.5% and 92.6%. This method shows the estimated state vector and the error covariance are accurate to the first-order Taylor series terms. A second method using Richardson Extrapolation improves prediction accuracy to the second-order Taylor series terms. This is implemented on the two examples, improving efficiency by 85.5% and 86.8%. |
Date of publication | 2017 |
Code Programming Language | MATLAB |
Comment |