A Kernel Classification Framework for Metric Learning

View Researcher's Other Codes

MATLAB code for the paper: “A Kernel Classification Framework for Metric Learning”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Faqiang Wang, Wangmeng Zuo, Lei Zhang, Deyu Meng,and David Zhang
Journal/Conference Name IEEE Transactions on Neural Networks and Learning Systems
Paper Category
Paper Abstract Learning a distance metric from the given training samples plays a crucial role in many machine learning tasks, and various models and optimization algorithms have been proposed in the past decade. In this paper, we generalize several state-of-the-art metric learning methods, such as large margin nearest neighbor (LMNN) and information theoretic metric learning (ITML), into a kernel classification framework. First, doublets and triplets are constructed from the training samples, and a family of degree-2 polynomial kernel functions are proposed for pairs of doublets or triplets. Then, a kernel classification framework is established to generalize many popular metric learning methods such as LMNN and ITML. The proposed framework can also suggest new metric learning methods, which can be efficiently implemented, interestingly, by using the standard support vector machine (SVM) solvers. Two novel metric learning methods, namely doublet-SVM and triplet-SVM, are then developed under the proposed framework. Experimental results show that doublet-SVM and triplet-SVM achieve competitive classification accuracies with state-of-the-art metric learning methods but with significantly less training time
Date of publication 2015
Code Programming Language MATLAB

Copyright Researcher 2022