A Cross-Architecture Instruction Embedding Model for Natural Language Processing-Inspired Binary Code Analysis

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Lannan Luo, Kimberly Redmond, Qiang Zeng
Journal/Conference Name Proceedings 2019 Workshop on Binary Analysis Research
Paper Category
Paper Abstract Given a closed-source program, such as most of proprietary software and viruses, binary code analysis is indispensable for many tasks, such as code plagiarism detection and malware analysis. Today, source code is very often compiled for various architectures, making cross-architecture binary code analysis increasingly important. A binary, after being disassembled, is expressed in an assembly languages. Thus, recent work starts exploring Natural Language Processing (NLP) inspired binary code analysis. In NLP, words are usually represented in high-dimensional vectors (i.e., embeddings) to facilitate further processing, which is one of the most common and critical steps in many NLP tasks. We regard instructions as words in NLP-inspired binary code analysis, and aim to represent instructions as embeddings as well. To facilitate cross-architecture binary code analysis, our goal is that similar instructions, regardless of their architectures, have embeddings close to each other. To this end, we propose a joint learning approach to generating instruction embeddings that capture not only the semantics of instructions within an architecture, but also their semantic relationships across architectures. To the best of our knowledge, this is the first work on building cross-architecture instruction embedding model. As a showcase, we apply the model to resolving one of the most fundamental problems for binary code similarity comparison---semantics-based basic block comparison, and the solution outperforms the code statistics based approach. It demonstrates that it is promising to apply the model to other cross-architecture binary code analysis tasks.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022