A Convolutional Attention Network for Extreme Summarization of Source Code

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Miltiadis Allamanis, Charles Sutton, Hao Peng
Journal/Conference Name 33rd International Conference on Machine Learning, ICML 2016
Paper Category
Paper Abstract Attention mechanisms in neural networks have proved useful for problems in which the input and output do not have fixed dimension. Often there exist features that are locally translation invariant and would be valuable for directing the model's attention, but previous attentional architectures are not constructed to learn such features specifically. We introduce an attentional neural network that employs convolution on the input tokens to detect local time-invariant and long-range topical attention features in a context-dependent way. We apply this architecture to the problem of extreme summarization of source code snippets into short, descriptive function name-like summaries. Using those features, the model sequentially generates a summary by marginalizing over two attention mechanisms one that predicts the next summary token based on the attention weights of the input tokens and another that is able to copy a code token as-is directly into the summary. We demonstrate our convolutional attention neural network's performance on 10 popular Java projects showing that it achieves better performance compared to previous attentional mechanisms.
Date of publication 2016
Code Programming Language Multiple
Comment

Copyright Researcher 2022