A Convolution Kernel Approach to Identifying Comparisons in Text

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Hady Lauw, Maksim Tkachenko
Journal/Conference Name IJCNLP 2015 7
Paper Category
Paper Abstract Comparisons in text, such as in online reviews, serve as useful decision aids. In this paper, we focus on the task of identifying whether a comparison exists between a specific pair of entity mentions in a sentence. This formulation is transformative, as previous work only seeks to determine whether a sentence is comparative, which is presumptuous in the event the sentence mentions multiple entities and is comparing only some, not all, of them. Our approach leverages not only lexical features such as salient words, but also structural features expressing the relationships among words and entity mentions. To model these features seamlessly, we rely on a dependency tree representation, and investigate the applicability of a series of tree kernels. This leads to the development of a new context-sensitive tree kernel Skip-node Kernel (SNK). We further describe both its exact and approximate computations. Through experiments on real-life datasets, we evaluate the effectiveness of our kernel-based approach for comparison identification, as well as the utility of SNK and its approximations.
Date of publication 2015
Code Programming Language F#
Comment

Copyright Researcher 2022