A Condition Number for Joint Optimization of Cycle-Consistent Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Qixing Huang, Zhenxiao Liang, Leonidas J. Guibas
Journal/Conference Name NeurIPS 2019 12
Paper Category
Paper Abstract A recent trend in optimizing maps such as dense correspondences between objects or neural networks between pairs of domains is to optimize them jointly. In this context, there is a natural \textsl{cycle-consistency} constraint, which regularizes composite maps associated with cycles, i.e., they are forced to be identity maps. However, as there is an exponential number of cycles in a graph, how to sample a subset of cycles becomes critical for efficient and effective enforcement of the cycle-consistency constraint. This paper presents an algorithm that select a subset of weighted cycles to minimize a condition number of the induced joint optimization problem. Experimental results on benchmark datasets justify the effectiveness of our approach for optimizing dense correspondences between 3D shapes and neural networks for predicting dense image flows.
Date of publication 2019
Code Programming Language MATLAB
Comment

Copyright Researcher 2022