A Computational Approach to Quantify the Benefits of Ridesharing for Policy Makers and Travellers

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Filippo Bistaffa, C. Blum, J. Cerquides, A. Farinelli, J. Rodríguez-Aguilar
Journal/Conference Name IEEE Transactions on Intelligent Transportation Systems
Paper Category
Paper Abstract Peer-to-peer ridesharing enables people to arrange one-time rides with their own private cars, without the involvement of professional drivers. It is a prominent collective intelligence application producing significant benefits both for individuals (reduced costs) and for the entire community (reduced pollution and traffic). Despite these very promising potential advantages, the percentage of users who currently adopt ridesharing solutions is very low, well below the adoption rate required to achieve said benefits. One of the reasons of this insufficient engagement by the public is the lack of effective incentive policies by regulatory authorities, who are not able to estimate the costs and the benefits of a given ridesharing adoption policy. Here we address these issues by (i) developing a novel algorithm that makes large-scale, real-time peer-to-peer ridesharing technologically feasible; and (ii) exhaustively quantifying the impact of different ridesharing scenarios in terms of environmental benefits (i.e., reduction of CO₂ emissions, noise pollution, and traffic congestion) and quality of service for the users. Our analysis on a real-world dataset shows that major societal benefits are expected from deploying peer-to-peer ridesharing depending on the trade-off between environmental benefits and quality of service. Results on a real-world dataset show that our approach can produce reductions up to a 70.78% in CO₂ emissions and up to 80.08% in traffic congestion.
Date of publication 2019
Code Programming Language C

Copyright Researcher 2022