A comparison of some conformal quantile regression methods

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Emmanuel J. Cand├Ęs, Matteo Sesia
Journal/Conference Name Stat
Paper Category
Paper Abstract We compare two recently proposed methods that combine ideas from conformal inference and quantile regression to produce locally adaptive and marginally valid prediction intervals under sample exchangeability (Romano et al., 2019; Kivaranovic et al., 2019). First, we prove that these two approaches are asymptotically efficient in large samples, under some additional assumptions. Then we compare them empirically on simulated and real data. Our results demonstrate that the method in Romano et al. (2019) typically yields tighter prediction intervals in finite samples. Finally, we discuss how to tune these procedures by fixing the relative proportions of observations used for training and conformalization.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022