A Comparison of Adaptation Techniques and Recurrent Neural Network Architectures

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Josef Michalek, Josef Psutka, Jan Zelinka, Jan Vanek
Journal/Conference Name Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Paper Category
Paper Abstract Recently, recurrent neural networks have become state-of-the-art in acoustic modeling for automatic speech recognition. The long short-term memory (LSTM) units are the most popular ones. However, alternative units like gated recurrent unit (GRU) and its modifications outperformed LSTM in some publications. In this paper, we compared five neural network (NN) architectures with various adaptation and feature normalization techniques. We have evaluated feature-space maximum likelihood linear regression, five variants of i-vector adaptation and two variants of cepstral mean normalization. The most adaptation and normalization techniques were developed for feed-forward NNs and, according to results in this paper, not all of them worked also with RNNs. For experiments, we have chosen a well known and available TIMIT phone recognition task. The phone recognition is much more sensitive to the quality of AM than large vocabulary task with a complex language model. Also, we published the open-source scripts to easily replicate the results and to help continue the development.
Date of publication 2018
Code Programming Language Python

Copyright Researcher 2022