A Comparative Study of Kernel Adaptive Filtering Algorithms

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors S. Van Vaerenbergh, I. SantamarĂ­a
Journal/Conference Name 2
Paper Category
Paper Abstract Kernel adaptive filtering is a growing field of signal processing that is concerned with nonlinear adaptive filtering. When implemented naïvely, the time and memory complexities of these algorithms grow at least linearly with the amount of data processed. A large number of practical solutions have been proposed throughout the last decade, based on sparsification or pruning mechanisms. Nevertheless, there is a lack of understanding of their relative merits, which often depend on the data they operate on. We propose to study the quality of the solution as a function of either the time or the memory complexity. We empirically test six different kernel adaptive filtering algorithms on three different benchmark data sets. We make our code available through an open source toolbox that includes additional algorithms and allows to measure the complexities explicitly in number of floating point operations and bytes needed, respectively.
Date of publication 2013
Code Programming Language MATLAB
Comment

Copyright Researcher 2022