A Closer Look at the Optimization Landscapes of Generative Adversarial Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Pascal Vincent, Gauthier Gidel, Hugo Berard, Simon Lacoste-Julien, Amjad Almahairi
Journal/Conference Name ICLR 2020 1
Paper Category
Paper Abstract Generative adversarial networks have been very successful in generative modeling, however they remain relatively challenging to train compared to standard deep neural networks. In this paper, we propose new visualization techniques for the optimization landscapes of GANs that enable us to study the game vector field resulting from the concatenation of the gradient of both players. Using these visualization techniques we try to bridge the gap between theory and practice by showing empirically that the training of GANs exhibits significant rotations around Local Stable Stationary Points (LSSP), similar to the one predicted by theory on toy examples. Moreover, we provide empirical evidence that GAN training converge to a stable stationary point which is a saddle point for the generator loss, not a minimum, while still achieving excellent performance.
Date of publication 2019
Code Programming Language Jupyter Notebook

Copyright Researcher 2022