A Closer Look at Generalisation in RAVEN

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Tim Miller, Krista Ehinger, Steven Spratley
Journal/Conference Name ECCV 2020 8
Paper Category
Paper Abstract Humans have a remarkable capacity to draw parallels between concepts, generalising their experience to new domains. This skill is essential to solving the visual problems featured in the RAVEN and PGM datasets, yet, previous papers have scarcely tested how well models generalise across tasks. Additionally, we encounter a critical issue that allows existing models to inadvertently 'cheat' problems in RAVEN. We therefore propose a simple workaround to resolve this issue, and focus the conversation on generalisation performance, as this was severely affected in the process. We revise the existing evaluation, and introduce two relational models, Rel-Base and Rel-AIR, that significantly improve this performance. To our knowledge, Rel-AIR is the first method to employ unsupervised scene decomposition in solving abstract visual reasoning problems, and along with Rel-Base, sets states-of-the-art for image-only reasoning and generalisation across both RAVEN and PGM.
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022