A Bi-directional Transformer for Musical Chord Recognition

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Jonghun Park, Kyoyun Choi, Dokyun Kim, Jonggwon Park, Sungwook Jeon
Journal/Conference Name Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019
Paper Category
Paper Abstract Chord recognition is an important task since chords are highly abstract and descriptive features of music. For effective chord recognition, it is essential to utilize relevant context in audio sequence. While various machine learning models such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been employed for the task, most of them have limitations in capturing long-term dependency or require training of an additional model. In this work, we utilize a self-attention mechanism for chord recognition to focus on certain regions of chords. Training of the proposed bi-directional Transformer for chord recognition (BTC) consists of a single phase while showing competitive performance. Through an attention map analysis, we have visualized how attention was performed. It turns out that the model was able to divide segments of chords by utilizing adaptive receptive field of the attention mechanism. Furthermore, it was observed that the model was able to effectively capture long-term dependencies, making use of essential information regardless of distance.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022